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Abstract— Recent years have witnessed a growing number of
image and video centric applications on mobile, vehicular, and
cloud platforms, involving a wide variety of digital screen content
images. Unlike natural scene images captured with modern high
fidelity cameras, screen content images are typically composed of
fewer colors, simpler shapes, and a larger frequency of thin lines.
In this paper, we develop a novel blind/no-reference (NR) model
for accessing the perceptual quality of screen content pictures
with big data learning. The new model extracts four types of
features descriptive of the picture complexity, of screen content
statistics, of global brightness quality, and of the sharpness of
details. Comparative experiments verify the efficacy of the new
model as compared with existing relevant blind picture quality
assessment algorithms applied on screen content image databases.
A regression module is trained on a considerable number of
training samples labeled with objective visual quality predictions
delivered by a high-performance full-reference method designed
for screen content image quality assessment (IQA). This results in
an opinion-unaware NR blind screen content IQA algorithm. Our
proposed model delivers computational efficiency and promising
performance. The source code of the new model will be avail-
able at: https://sites.google.com/site/guke198701/publications.

Index Terms— Screen content image, image quality assess-
ment (IQA), no-reference (NR), opinion-unaware (OU), scene
statistics model, hybrid filter, image complexity description,
big data.

I. INTRODUCTION

SCREEN content pictures have become quite common over
the last several years. Numerous consumer applications,

such as online gaming, mobile web browsing, vehicle nav-
igation, remote control, cloud computing and more, involve
computer-generated screen content images. Figures 1(a)-(b)
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Fig. 1. Small Comparison of naturalistic and screen content images:
(a)-(b) original pristine natural and screen content images; (c)-(d) histograms
of MSCN coefficients of pristine and distorted versions of (a)-(b) corrupted
by Gaussian blur, additive noise and JPEG compression.

depict two typical images, one of a natural scene and the
other of a screen content scene, captured using a digital
camera and a screenshot tool, respectively. There are important
differences between camera-captured images of natural scenes
and computer-generated screen content images. Natural scene
images have rich and complex distributions of luminance and
color that are governed by statistical laws, while screen content
images generally contain fewer and simpler luminance and
color variation and structures.

The study of screen content image quality is a new and
interesting topic. In [1], Gu et al. conducted a performance
comparison of mainstream Full-Reference (FR) Image Quality
Assessment (IQA) methods on screen content image databases,
including NQM [2], SSIM [3], MS-SSIM [4], VSNR [5],
FSIM [6], GSI [7], GMSD [8], LTG [9], and VSI [10]. Full
reference refers to the situation where a reference image is
available when predicting quality. Their results implied that
existing FR metrics, despite attaining superior performance
when evaluating the quality of natural scene images, fail on
the screen content IQA problem.

Similar problems are encountered using blind/No-
Reference (NR) IQA models. Motivated by well-known
Natural Scene Statistics (NSS) models [11], a variety of
blind picture quality models [12], including BLIINDS-II [13],
BRISQUE [14], C-DIIVINE [15], LPSI [16], NIQE [17] and
IL-NIQE [18], have been developed. No reference refers to
the situation where no information contained in any reference
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image is used to infer quality. Unfortunately, all were found
to work ineffectively on the screen content IQA problem [19].
Two main reasons for this are that NSS models fail when
1) pristine natural scene images are contaminated; 2) images
are of computer graphic or document contents, not resulting
from a natural source. To offer a more straightforward
illustration, we applied the decorrelating method of [14] on
the two images in Figs. 1(a)-(b) by computing their Mean
Subtracted Contrast Normalized (MSCN) coefficients and
plotting their histograms in Figs. 1(c)-(d). Clearly, the MSCN
coefficients of the pristine natural scene image nicely follow
the NSS model; that is, the histogram of MSCN coefficients
exhibits a Gaussian-like appearance [11]. By contrast, the
undistorted screen content image yields a quite different
Laplacian-like MSCN distribution.

We plotted the empirical probability density functions
(histograms) of distorted versions of the natural scene and
screen content images in Figs. 1(c)-(d). Three distortions:
Gaussian blur, additive noise and JPEG compression, were
applied to the original natural scene and screen content images.
From Fig. 1(c), it may be observed that as revealed in [11],
each type of distortion changes the distribution of the MSCN
coefficients in a particular way; for example, blur distortion
narrows the histogram towards a Laplacian-like distribution,
whereas additive white noise widens the histogram. However,
as shown in Fig. 1(d), distortions such as blur and blockiness
may not affect the statistical distribution as compared with
that of the undistorted screen content image. This dichotomy
is increased when the original image is less naturalistic, viz.,
contains more artificial content, such as text, and less photo-
graphic content. Further, the distribution is transduced into an
odd shape when additive noise is injected. Thus NSS models
appear to be inadequate for the design of blind IQA models
of screen content images, which suggests that enriching and
complementing NSS features with other descriptors of less
naturalistic content may be beneficial.

To address this important yet challenging problem, we pro-
pose a novel IQA framework which consists of four elements.
The first element is a description of the image complexity,
which is affected by artifacts. For instance, image complexity
increases when high-frequency noise is injected, whereas it
declines as low-frequency blur is introduced. The second
element models the normalized bandpass statistics of screen
content images, using them to measure the statistical departure
of corrupted images from a pristine state. This element is
included to mainly account for distortions of those portions
of screen content that are naturalistic photographs. The third
and fourth elements measure global brightness and surface
quality, and picture detail, respectively. A total of 15 features
are extracted from each input image signal. To convert features
into quality scores, we deploy a large set of training data as
samples to learn a regression module. The training samples are
composed of about 100,000 screen content images captured on
public webpages and labeled using a high-performance screen
content FR-IQA model that we describe later. By using a
fixed regression module, our approach belongs to the class
of Opinion-Unaware (OU) NR-IQA models that require no
training on human scored images.

The layout of this paper is as follows. Related work is con-
sidered in Section II. Section III presents a detailed description
of the quality-aware features used and the regression module.
Experiments conducted on two screen content image data-
bases [20], [21] are provided to validate the designed features
and the proposed OU-NR-IQA model against state-of-the-art
quality models, as described in Section IV. We draw some
concluding remarks in Section V.

II. RELATED WORKS

Research on screen content images is relatively new, espe-
cially with regards to quality assessment. We first review
representative work in the area of screen content IQA.

A. Image Databases

A basic tool we will use here is the Screen Image Quality
Assessment Database (SIQAD) [20]. This database, which
is the first of its kind, is made up of 20 pristine screen
content images and 980 corresponding images distorted by
seven categories of distortions: Gaussian Blur (GB), Contrast
Change (CC), Gaussian Noise (GN), Motion Blur (MB),
JPEG2000 Compression (J2C), JPEG Compression (JC), and
Layer segmentation-backed Coding (LC) [22], each at seven
levels of distortions.

We also use the more specific Quality Assessment of Com-
pressed Screen content images (QACS) [21], which captures
the effects of compression on the quality of screen content
images. The QACS database contains 492 compressed images
generated by corrupting 24 undistorted screen content images
using two advanced coding methods: High-Efficiency Video
Coding (HEVC) [23] and the new Screen Content Compres-
sion (SCC) algorithm, which claims to improve on HEVC
when applied to screen content [24].

B. Quality Measures

Creating picture quality databases of even moderate size,
such as SIQAD and QACS, consumes great expense of time
and labor. Subjective evaluation is unrealistic in real-time
application scenarios. Thus, significant effort has been applied
to the development of objective IQA models which are capable
of quickly and accurately predicting image quality.

Currently, only a few screen content IQA models have been
developed, including four FR models and one NR model.
The pioneering first model is the FR Screen content Per-
ceptual Quality Assessment (SPQA) model [20], which finds
perceptual differences of pictorial and textual areas between
distorted and undistorted images. Another FR method uses
adaptive window sizes within the classical SSIM frame-
work [25]. A small kernel is used for textual regions while
a large kernel is used for pictorial areas. The Structure-
Induced Quality Metric (SIQM) is an FR model that measures
structural degradation predicted by SSIM [26]. Further along
this line, the Saliency-guided Quality Measure of Screen con-
tent (SQMS) model incorporates gradient magnitude structural
information and a model of visual saliency [1]. SQMS cur-
rently delivers the best correlation performance against human
judgments among state-of-the-art FR-IQA models that predict
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Fig. 2. A general framework for creating blind IQA models without
training on human opinion scores.

the quality of screen content images. We will use this model
later as a proxy for human predictions to label distorted screen
content images.

A no-reference model which is also free of training on
human scores was dubbed Blind Quality Measure for Screen
content images (BQMS) [19]. In this method, 13 features are
extracted under a statistical model of screen content pictures,
built using 1,000 high-quality “webpage” and “screen snap”
images collected from the “Google Images” website. A fixed
regression module was learned on 100,000 distorted images
assessed/labeled by FR SIQM scores, eliminating the need
for subjective tests to create the model. Experimental results
validated the competitive performance of the BQMS model
against recently proposed FR and NR algorithms.

III. METHODOLOGY

Figure 2 depicts a general framework for the design
of opinion-unaware NR-IQA models via big data learning.
This framework could be used to transform any blind
IQA model into one that does not require human ratings,
such as recent blind IQA models designed to handle mul-
tiple distortions [27], [28], infrared images [29], authentic
distortions [30], contrast distortions [31], tone-mapped ima-
ges [32], [33], dehazed images [34], etc. By contrast with
NIQE [17] and IL-NIQE [18] which gauge the distance
between a query image and a corpus of uncorrupted natural
images to infer visual quality, this general framework can
be used to derive both general-purpose and distortion-specific
IQA models. Our proposed blind quality model is based on
this general framework.

A. Feature Selection

1) Image Complexity Description: Image complexity is
an important factor to be considered when devising screen
content IQA models, since it relates to the effects of gaze
direction and spatial masking. Autoregressive (AR) models
have been successfully used in the past to estimate image
complexity [35], [36], where they have been found to be
highly sensitive to distortions and hence, effective for sup-
porting image quality prediction [55], [56]. We measure image
complexity by computing an error map between an image and
its predicted output generated by an AR model of the input
image s in a local manner

yq = Qn(xq) a + t̃q (1)

Fig. 3. Comparison of different filters: (a) a lossless screen content
image; (b)-(d) processed images created using AR model, BL filter
and hybrid filter, respectively.

where q is the index of a query pixel; yq is the value of a pixel
at location xq ; Qn(yq) is composed of the n neighboring pixels
of xq ; a = (a1, a2, . . . , an)

T is a vector of AR parameters; and
t̃q is the residual error. Then the predicted image is

ŷq = Qn(xq) â (2)

where â is determined based on the method in [35].
We present a visual example of a screen content image and

its associated AR predicted output in Figs. 3(a)-(b). As can
be seen, the AR model performs quite well on textured
regions (highlighted by a blue rectangle) [37], but less well
near image edges owing to introduced ringing artifacts (high-
lighted by a red rectangle). An alternative approach would be
to deploy the bilateral (BL) filter, which has edge-preserving
power and is computationally simple, to modify the AR model
towards protecting edges and inhibiting ringing artifacts [38].
The BL filter is defined by

yq = Qn(xq) b + t̂q (3)

where b = (b1, b2, . . . , bn)T are a set of coefficients produced
by BL filtering; t̂q is the error; and b is the BL filter response.
The parameters used in the BL filter follow the assignment
in [38], to produce the result shown in Fig. 3(c). The BL filter
delivers sharper results near luminance edges than does the
AR-based predictor, but it fails to maintain texture details.
To obtain the best properties of both models, we devised
a hybrid filter that systematically combines the AR and BL
filters:

ŷq = Qn(xq) â + κ Qn(xq) b
1 + κ

(4)

where κ adjusts the relative strength of the responses of the
AR and BL filters. We fixed this value at κ = 9, since its asso-
ciated hybrid filter can yield the output image which exhibits
a good tradeoff between the AR and BL predictors, as shown
in Fig. 3(d). More analysis about how κ was determined will
be provided in Section IV. While a simple linear weighting
function with fixed weights is used, an adaptive weighting
scheme may work better and will be studied in future work.
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Next we compute the residual error map �yq =
yq − ŷq , where large absolute values correspond to pixels that
are not accurately predicted, as in highly complex textured
regions, while small absolute values correspond to less com-
plex or smooth regions. The image complexity feature is then
defined to be the entropy of the residual error map Er :

Er = −
∫

i
pi log pi di (5)

where pi is the probability density of the i -th grayscale in the
error map �yq .

Early psychophysical masking experiments [39] and neu-
ropsychological recordings [40] indicated that mechanisms
selective to narrow ranges of spatial frequencies and orien-
tations are functionally intrinsic in the human visual sys-
tem (HVS). These observations have evolved into multiscale
cortical models that pervade modern perceptual modeling and
visual processing algorithms. Therefore, we also measure the
image complexity at a decreased resolution (by subsampling
with a stride of 16 pixels along each cardinal direction after
applying a 16×16 square moving low-pass filter. We denote
the reduced resolution complexity as Ed . More scales were
not taken into account since they were found to have little
additional impact on performance. Thus, the overall image
complexity description is the pair Fc = {Er , Ed}.

2) Screen Content Statistics: We make measurements of the
degradation of image structure in the following way. Given an
image s, we denote μs, σs and σ̃s as local mean and variance
maps:

μs =
R∑

r=1

wr sr (6)

σs =
[ R∑

r=1

wr (sr − μs)
2
] 1

2
(7)

σ̃s =
[ R∑

r=1

(sr − μs)
2
] 1

2
(8)

where w = {wr |r = 1, 2, . . . , R} is a normalized Gaussian
window. The structural degradation is then measured by

Sμ(s) = 1

D

∑( σ(μs,s) + δ

σ(μs)σs + δ

)
(9)

Sσ (s) = 1

D

∑( σ(σs,σ̃s) + δ

σ(σs)σ(σ̃s) + δ

)
(10)

where D is the number of pixels in s; δ is an additional fixed
positive stabilizing constant; and σ(α,β) is the local empirical
covariance map between α and β:

σ(α,β) =
R∑

r=1

wr (αr − μα)(βr − μβ). (11)

Our approach to modeling quality perception is patch
based [3]. We deploy two normalized Gaussian window func-
tions to capture microstructure and macrostructure, respec-
tively. This is motivated by the observation that screen content
pictures usually include both pictorial and textual parts simul-
taneously. As in [3] we apply a Gaussian window function of

Fig. 4. Comparison of structural degradation information and image com-
plexity measure on four different kinds of image patches: (a) Smooth patch
with Er = 0.3916 and S(μ,3,i) = 0.9975; (b) Edge patch with Er = 0.8021
and S(μ,3,i) = 0.9868; (c) Textural patch with Er = 2.6455 and S(μ,3,i) =
0.9808; (d) Textual patch with Er = 3.0838 and S(μ,3,i) = 0.9077.

size 11×11 and standard deviation 1.5 to capture the structure
of pictorial parts.

In order to also capture detailed structures in the textual
parts of the images, which often contain fine lines, we also
measure (6)-(11) using a smaller Gaussian function of size
3×3 and unit standard deviation [25]. Hence, we com-
pute (6)-(11) using two windows. Furthermore, we make
a detailed analysis of compressed image blocks. When an
image is corrupted by block-based (JPEG) compression, using
8×8 codeblocks, the 6×6 interior of a coded block is often
smoothed by the zeroing of high-frequency block DCT coef-
ficients, whereas block artifacts are commonly introduced
along the block edges. So we process the interiors and edges
of blocks differently, when extracting structural degradation
information. Other distortions, such as noise and blur, affect
the block interiors and edges almost uniformly [41]. This
analysis yields eight structural degradation features, denoted
S(a,b,c), where a = {μ, σ } indicates information type, b =
{3, 11} indicates kernel size, and c = {i, e} indicates block
interiors and edges, respectively.

Using the concept of image structural similarity in [3],
we use Eq. (9), we to measure the variations between struc-
tures in the image s and an associated blurred version μs of it.
Similarly, in Eq. (10), we first remove the mean from s and μs
to generate σs and σ̃s, then compute the structural differences
between them. We suppose that image complexity should have
a negative correlation with structural degradation information
defined in Eqs. (9)-(10). That is to say, a high-complexity
image generally has low structural degradation, and vice versa.
As shown in Fig. 4, four representative image patches that
belong to different types are selected for comparison. The
values of their associated image complexity Er and one of
structural degradation information S(μ,3,i) are presented in
the figure. In the example, as the image complexity rises,
the structural degradation information reduces.

To further demonstrate our supposition, a total of 800 screen
content pictures were gathered with screenshot tools to exam-
ine the correlation between structural degradation features and
image complexity features. These images are composed of
homepages of well-known journals, conferences and work-
shops, a matlab interface, international and domestic college
and web portals, webstore platforms, google maps, webpage
gaming and more. No overlap exists between the captured
screen content images and the 44 source images in the SIQAD
and QACS databases used for testing. Sixteen representative
screen content images are shown in Fig. 5. Eight structural
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Fig. 5. Sixteen representative images of screen content scene collected using screenshot tools.

Fig. 6. Representative scatter plot of image complexity feature Er versus
structural degradation information S(μ,3,i) on uncorrupted (blue points) and
corrupted (red points) screen content images.

degradation features S(a,b,c)(s0), where s0 indicates an uncor-
rupted screen content image, and the image complexity fea-
tures Er (s0) were compared using the captured screen content
images. One exemplified scatter plot is shown in Fig. 6. Blue
points are associated to uncorrupted screen content images.
As may be seen, there is an evident near-linear relationship
on uncorrupted images between the image complexity feature
Er and the structural degradation S(μ,3,i). This motivates
exploring the possibility of predicting visual distortions by
measuring the departure of a corrupted screen content image
from this linear relationship observed on good quality screen
content images. Therefore we attempt to fit the linear regres-
sion model:

Er (s0) =
[

A(a,b,c)
B(a,b,c)

]T [
S(a,b,c)(s0)

1

]
(12)

where [A(a,b,c), B(a,b,c)] indicates one of 8 parameter pairs
corresponding to (a, b, c). We use the least square method to
estimate these parameters.

Structural degradation features capture variations in image
structure, whereas image complexity measurements are
responsive to image details. Thus, structural degradation fea-
tures and image complexity features exhibit differing sensitiv-
ities to the levels and types of distortion. Generally, we find
that the approximate linear relationship between uncorrupted
screen content picture features will be disturbed when distor-
tions are introduced, as shown by the red points in Fig. 6.

Based on this notion, define T(a,b,c)(s) = Er (s) − (A(a,b,c) ·
S(a,b,c)(s) + B(a,b,c)). The values of T(a,b,c)(s) computed on
high quality images should approach zero, while on corrupted
images T(a,b,c)(s) will depart from zero with increasing dis-
tance when the distortion grows. We then define features
predictive of screen content distortions to be T(a,b,c), where
a = {μ, σ }, b = {3, 11}, and c = {i, e}.

3) Global Measurement of Brightness and Surface Quality:
The above-described features are effective for gauging many
visual degradations, but are not able to capture undesirable
brightness shifts or contrast alterations. Of these, contrast
alteration is more difficult to address as it also affects the
image complexity: an enhanced contrast may increase the
image complexity and vice versa. Thus, we seek features
that are insensitive to noise, blur and other artifacts, but are
sensitive to contrast adjustment. To this end, we deploy the
sample mean of the image s, denoted as O1:

O1 = E(s) = 1

D

D∑
d=1

sd . (13)

This feature captures brightness shifts resulting from errors of
improper post-processing technologies. We also measure the
sample skewness of the image s:

O3 = E[(s − O1)
3]√

E3[(s − O1)2] . (14)

As shown in [42], this feature has a positive correlation with
image contrast. For illustration consider the example in Fig. 7.
The processed screen content image with greater skew appears
glossier and darker than its corresponding original version.
In [42], a heuristic model was presented that relates the
perception of surface quality to skewness. They suggested a
neural mechanism supportive of the model: an accelerating
nonlinearity responsive to on- and off-center visual neurons
could be used to calculate skewness and thus predict the
perceived image surface quality. To summarize, we measure
features related to global brightness and surface quality and
denote them Fbs = {O1, O3}.

4) Detail Assessment of Sharpness and Corners: The last
thirty years have witnessed on explosive growth of pic-
ture compression technologies. Compression generally intro-
duces complex interplays of multiple distortions. We use two
classes of features designed to sense two major types of
compression distortion: local sharpness loss and blocking.
The first factor senses loss of sharpness [43], [44], [45].
Similar to [44], we measure the log-energy of wavelet sub-
bands (9/7 Danbechies DWT filters) of an image at three
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Fig. 7. Illustration of skewness: (a)-(b) original screen content image with skewness 0.8662 and its histogram; (c)-(d) enhanced screen content image with
skewness 0.9084 and its histogram. It is apparent that (d) has a longer tail than (b).

Fig. 8. Comparison of images with different compression levels. QP: the quality parameter of compression. MOS: mean opinion score. R will be defined
in (19). (a) Lossless image; (b)-(c) Compressed image with QP = 40 and QP = 50.

scales, {L L3, L Hn, H Ln, H Hn}, where n = 1, 2, 3. At each
decomposition level, the log-energy is calculated

Lm,n = log10

[
1 + 1

Mn

∑
h

m2
n(h)

]
(15)

where h is the pixel index; m indexes L H , H L, and H H ;
and Mn indicates the number of wavelet coefficients at the
n-th level. The log-energy at each decomposition level is
measured as

Ln = L L H,n + L H L ,n + γ L H H,n

2 + γ
(16)

where we fixed γ = 8 to impose a larger impact on the
H H subbands and more discussions about how to determine
this parameter will be given in Section IV. Only the 2nd and
3rd levels are used to capture sharpness-related information.
We have found that using all three levels does not yield any
gain in performance. The second type of compression feature
measures blockiness via a corner detection technique. It was
shown in [46] that compression blockiness is closely correlated
with corners. Fig. 8 exemplifies how corners can arise and vary
with compression on a screen content image. Certainly, this
type of computer-created content contains many sharp edges
and regular patterns, hence genuine corners may often arise in
screen content images. However, pseudo corners arise due to
blockiness from compression. We take the strategy that while
genuine corners may be found anywhere, detected pseudo
corners only occur at block boundaries. Thus define the image
matrix S = (si j )τ×υ , where τ and υ indicate image height
and width respectively. Corners are first detected using the
Shi-Tomasi detector [47]. Denote the corner map C = (ci j )τ×υ

and the pseudo corner map P = (pi j )τ×υ , where

ci j =
{

1 if si j ∈ C

0 otherwise
(17)

pi j =
{

1 if si j ∈ C, mod(i, k) � 1, mod( j, k) � 1

0 otherwise
(18)

where si j ∈ C means that a corner was detected at loca-
tion (i, j), mod retains the remainder, and k denotes the size
of the compression blocks (typically 8×8 in JPEG). In Fig. 8,
red dots indicate C = (ci j )τ×υ while red and blue dots
together represent P = (pi j )τ×υ . As compression distortion
is increased, more pseudo corners appear due to blockiness,
while genuine corners begin to disappear because of intra-
block blurring. To combine these, compute the ratio of pseudo
corners to all corners:

R = √
ξp/ξc (19)

where ξp = ∑
i, j pi j and ξc = ∑

i, j ci j are the number of
pseudo corners and all corners, respectively. Hence the last
features computed related to image sharpness and corners are
Fsc = {L2, L3, R}.

Overall, there are a total of 15 features extracted, descriptive
of image complexity (Index 1), screen content scene statis-
tics (Index 2), global brightness and surface quality (Index 3),
and compression-induced image sharpness loss and blocky
corners (Index 4). We summarize these features in Table I.

B. Module Regression

The 15 features must be combined to provide a single direct
prediction of the visual quality of a screen content image.
We therefore deploy a regression engine that can reliably
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TABLE I

SUMMARY OF FEATURES FOR BLIND IQA OF SCREEN CONTENT

convert 15 features into a single quality index. We use an
efficient support vector regression (SVR) [13], [14], [15] to
transform the features to an overall quality score. Specifically,
we used the LibSVM package to implement the SVR using
the Radial Basis Function (RBF) kernel [48].

To test our model we computed the median performance
across 1,000 trial splits into 80% data for training and 20%
data for testing. Current image quality databases contain a
limited number of different scenes and distortion levels, less
than 1,500 in the case of screen content images. Hence, if a
regression module is found using just a few thousand screen
content images as training data, it is difficult to ensure that
the derived regression module will succeed when applied to a
broader scope of image scenes and distortion levels. To cope
with this problem, a growing body of OU blind IQA metrics
have been proposed [17], [18]. Broadly speaking, opinion-
aware (OA) methods rely on human-labeled training images,
while OU methods do not depend on training images labeled
with subjective ratings. OU models are regarded as having
greater potential to generalize on high-volumes of real world
images.

One modern strategy for the design of OU-NR-IQA models
relies on NSS constraints, as first exemplified by NIQE [17]
and IL-NIQE [18]. These blind models predict image quality
by measuring the distance between an input query image
and a set of lossless natural images in accordance with NSS
models. This design strategy is effective when constructing
general-purpose NR-IQA algorithms that can handle various
types of distortions. Another effective strategy for developing
OU-NR-IQA models resorts to the general framework pro-
vided at the beginning of this section. A significant advantage
of this framework is its flexibility in developing general-
purpose (or distortion-specific) blind IQA models based on
much larger datasets of training images corrupted by a wider
array of distortion types. We use this general framework to
train an SVR to learn a regression module using a very large
body of training data. While the SVR is highly efficient,
we plan to explore more sophisticated learning tools in the
future.

1) Training Samples: Unlike camera-captured natural scene
images, screen content images are usually generated or assem-
bled by a computer. The aforementioned 800 screen content
images we gathered were used to create the model of screen
content images. We applied 11 types of distortions to corrupt
800 screen content images to create 100,000 distorted images
as training samples. The 11 distortion types used were GN,

JC, J2C, HEVC, SCC, GB, MB and four CC-related dis-
tortions that include Gamma transfer, brightness intensity-
shifting, etc, as used in the CCID2014 database that was
designed to enable the analysis of contrast alterations [49].
The authors of [19] collected 1,000 “webpage” and “screen
snap” images by downloading them from the “Google Images”
website. However, those images were not examined to deter-
mine whether they were free from visible distortions. Further,
the image content was somewhat limited and resolution of
some of the images was quite low. Hence, we have manually
collected 800 apparently distortion-free screen content images
containing much richer content, as described earlier.

2) Training Labels: Training labels in IQA researches are
generally derived from subjective experiments. This kind of
experiment is quite time- and expense-consuming, and not
suitable for labeling very large number of training images.
Hence, we avoided the problem of large-scale human studies
by following the method of [19], where scores produced
by an objective quality algorithm were used as training
labels to replace subjective opinion scores. Ideally, a high-
performance FR-IQA model should be used to approximate
human ratings. We deployed the FR SQMS metric, which
achieves superior correlation performance when used to assess
screen content pictures. We labeled about 100,000 training
images (after outlier removal) with predicted quality scores
delivered by SQMS. By training the SVR on such high-
volume training data, we obtained a fixed regression module
which converts 15 features extracted into a single quality
prediction score. We call this model the Screen Image Quality
Evaluator (SIQE).

3) Data Cleaning: An inevitable risk underlying any
FR metric based learning framework is that incorrectly labeled
training data may mislead the training process. This suggests
that a mechanism to detect and eliminate noisy training data
would be useful [52]. Our approach to this is to compare
the quality predictions delivered by two high-performance
FR metrics to detect potentially “noisy” quality predictions.
Specifically, we deploy the SQMS and SIQM algorithms, both
of which have been shown to have high prediction accuracy
on the screen content IQA problem. To detect noisy instances,
we measured the PLC between the SQMS and SIQM scores
on each of the 800 image contents. Figure 9 plots the 800 PLC
values, which shows that the vast majority of the PLC values
was quite high, with just a few falling below 0.9, as indicated
in red in Fig. 9. We assumed that these low PLC predictions
were “noisy”, and removed these image contents and their
corresponding training images. Note that using an FR model
based training framework can be used to introduce a very large
number of training samples, thereby alleviating the overfitting
problem. Using FR models based on complementary quality
measurement techniques is a reasonable way to clean noisy
training data, yet we believe that this new and tough problem
merits further deep study.

C. Complexity Reduction

The hybrid filter operates locally, which makes SIQE ineffi-
cient. For an image of size 2560×1440, the time consumed to
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Fig. 9. Illustration of PLC correlation values between SQMS scores and SIQM scores for each of 800 image contents.

TABLE II

COMPUTATION TIME OF EACH TYPE OF EXTRACTED FEATURES

compute each of the four types of features is listed in Table II.
Implementing SIQE on a high-definition image consumes
considerable time: about 804 seconds. The cost of estimating
image complexity is more than 600 times that of the other
three feature types.

One way to simplify computation of the hybrid filter (espe-
cially the AR model contained therein) would be to remove
the AR model while preserving the BL filter. We call this
simplified version the Simplified Screen Image Quality Eval-
uator (SSIQE). SSIQE requires only 42.2 and 0.19 seconds of
compute time on the above 2560 × 1440 image, resulting in
computational efficiency gains of 19 and 17 times. The second
way is to introduce highly efficient algorithms to simulate
the output of the hybrid filter. Computing the entropy of the
difference between an image and its prediction, namely �yq ,
is closely connected to predictive coding [50], [51]. Following
this idea, we exploit the compressibility of an image to
estimate complexity. We examined five compression methods:
JPEG, JP2K, H.264, HEVC and SCC. As a good tradeoff
between effectiveness and efficiency, we adopted JPEG com-
pression in the “lossless” mode, and used the achieved bit per
pixel (bpp) value as an alternate, but related method of image
complexity estimation. Using the 100,000 training images,
the scatter plot between the JPEG-based bpp values Br and the
image complexity measure Er computed via the hybrid filter is
shown in Fig. 10. There is a broadly linear relationship (linear
correlation exceeds 95%). Similar to (12), establish this linear
model and seek the two parameters found by least squares.
Replacing the image complexity estimates Er and Ed with
compression-backed Br and Bd , results in an alternate, faster
model, dubbed the Accelerated Screen Image Quality Evalua-
tor (ASIQE). Using the same 2560 × 1440 image, the compu-
tation requires only 0.125 and 0.022 seconds when computing
Br and Bd respectively, or about 6400 and 150 times the
computational efficiency relative to computing Er and Ed .

Fig. 10. Scatter plot of image complexity measure (Er ) and JPEG-based
bpp value (Br ) on 100,000 training images.

More comparisons between the SIQE and ASIQE models are
given in the next section.

IV. EXPERIMENTS AND DISCUSSIONS

We measured and compared the correlation performance of
the blind SIQE, SSIQE and ASIQE models against 16 modern
IQA models on the SIQAD and QACS databases.

A. Testing Protocol

1) Algorithms: Numerous well-established IQA models
have been proposed during the past decade. The major-
ity of these have been demonstrated to be not only
performance-effective but also time-efficient. In order to
study the effectiveness of quality models proposed here,
three classes of 16 approaches were selected for comparison.
The first class is composed of five OA-NR-IQA algorithms:
BLIINDS-II [13], BRISQUE [14], SSEQ [53], GMLF [54]
and NFERM [55]. The second class involves eight recently
explored FR-IQA models: FSIMc [6], GSI [7], IGM [56],
VSI [10], PSIM [57], ADD-GSIM [58], SIQM [26] and
SQMS [1]. The third class consists of three start-of-the-
art blind OU-IQA methods, NIQE [17], IL-NIQE [18] and
BQMS [19].

2) Databases: To the best of our knowledge, only two
existing databases, SIQAD [20] and QACS [21], are relevant to
screen content picture quality evaluation. Detailed illustrations
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TABLE III

COMPARISON OF FEATURE EFFECTIVENESS OF EIGHT POPULAR BLIND IQA MODELS. WE BOLD THE TOP THREE METRICS

can be found in Section II-A. The SIQAD database includes
980 screen content images corrupted by conventional single
distortion types, e.g. blur and noise, while the QACS database
contains 492 screen content images distorted by two distortion
types, i.e. HEVC and SCC compression technologies.

3) Criteria: In most cases, we use four typical per-
formance evaluation criteria, the Pearson Linear Correla-
tion coefficient (PLC), Spearman Rank order Correlation
coefficient (SRC), Kendall’s Rank-order Correlation coeffi-
cient (KRC) and Root Mean Square error (RMS). SRC and
KRC are directly calculated between raw objective quality pre-
dictions and subjective scores, but the other two are computed
after a regression process, following ITU Recommendation
BT500 [59]. Here a logistic regression with five parameters
was used:

qc = ν1

[
1

2
− 1

1 + eν2(qr−ν3)

]
+ ν4qr + ν5 (20)

where qr and qc denote raw and converted quality predictions
of an objective IQA metric. We used the MATLAB functions
“nlinfit” and “nlpredci” to fit the curve and estimate those five
model parameters’ values. PLC gauges prediction accuracy
between two input variable vectors, whereas RMS computes
prediction consistency. SRC and KRC are non-parametric
measures of monotonicity. A good model should lead to large
values of PLC, SRC and KRC, and small values of RMS.

B. Performance Evaluation
1) Feature Comparison: We first applied a popular and

commonly employed test to examine the effectiveness of
each of the selected features relative to five modern
NR-IQA algorithms. Following the testing procedure con-
ducted in [13], [14], and [55], we randomly divided the
980 SIQAD images into two sets. One set included 784 dis-
torted screen content images associated with 16 reference
images while the other set included 196 testing screen content
images associated with the remaining 4 reference images. The
regression module was then learned using the 80% of training
data from the first set, then the performance indices were
calculated using the other 20% of the test data from the second
set. The above process was iterated 1,000 times and the median
correlations across the 1,000 trials was recorded. In Table III
the median performance indices of the BLIINDS-II,
BRISQUE, SSEQ, GMLF, NFERM and the proposed SIQE,
SSIQE and ASIQE are reported. The three best performing
models are underlined and bolded. Clearly, our three proposed

blind quality models obtained highly competitive performance
against the five compared models. It may be seen that the
performance of ASIQE and SSIQE is a little inferior to that
of SIQE in most cases.

2) Metric Comparison: We compared the performance
of the proposed SIQE, SSIQE and ASIQE models with
state-of-the-art FR methods: FSIMc, GSI, IGM, VSI, PSIM,
ADD-GSIM, SIQM, SQMS, and the OU-NR models: NIQE,
IL-NIQE, and BQMS. The results are shown in Table IV using
a linearly weighted average performance comparison, where
the relative weights were assigned in proportion to the number
of images in the testing databases. The top three methods in
each type are bolded and underlined in the table. We draw
several main conclusions. First, the proposed SIQE, SSIQE
and ASIQE models were clearly superior to the other blind
quality models, especially on the QACS database. This is quite
reasonable, since the features extracted were devised specifi-
cally for screen content IQA, and the training labels came from
the top-performing FR SQMS model. Second, SIQE, SSIQE
and ASIQE outperformed most FR IQA methods tested. Third,
the ASIQE model achieved similar performance as SIQE, but
with a vast reduction in cost, making it more applicable to real-
time systems. Fourth, there was only a very small difference
between SIQE and ASIQE on the SIQAD database, but a
slightly larger on the QACS database, possibly because the
linear correlation between Er and Br on compressed screen
content images (about 96%) was much higher than that on
other types of corrupted screen content images (about 90%).

3) Feature Contribution: The contribution of each feature
is a critical aspect of any quality prediction model [60], [61].
Hence, we examined the variations of the SRC values for dif-
ferent combinations of feature groups (FGs). Each of four FGs,
as provided in Table I, was compared and ranked in terms
of SRC: FG2 (0.598) > FG4 (0.426) > FG1 (0.411) > FG3
(0.120). Next, we fixed the optimal FG2 and added each of the
other three FGs individually, revealing the following rankings:
FG2+4 (0.799) > FG1+2 (0.785) > FG2+3 (0.707). We then
repeated the above process by fixing the best performing
FG2+4, and separately adding FG1 and FG3. This yielded
the rankings: FG1+2 + 4 (0.815) > FG2+3 + 4 (0.804).
Compared with the SIQE’s SRC value (0.824), we arrive at
two conclusions: 1) all four FGs play crucial roles in the design
of SIQE metric; 2) the rank of the feature contribution is
FG2 > FG4 > FG1 > FG3. For the reviewers’ conveniences,
we present the above SRC values in Fig. 11. We furthermore
checked the performance of SIQE without the first feature, due
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TABLE IV

COMPARISON OF 14 MODERN FR- AND OU-NR-IQA METHODS. WE BOLD THE TOP THREE MODELS OF EACH TYPE

TABLE V

PERFORMANCE EVALUATION OF USING DIFFERENT FR-IQA METRICS FOR LABELING THE LARGE-SCALE TRAINING SAMPLES

Fig. 11. SRC values of different combinations of feature types.

to its high cost. The SRC and KRC values were respectively
0.8201 and 0.6296, which is a little inferior to SIQE. Despite
little performance loss, we are unable to isolatedly remove the
first feature since it is also used to compute the second type
of features. We therefore introduce a very fast compression
technique to approximate the first feature.

4) Training Label Influence: The impact of using differ-
ent FR metrics to label the training data deserves explo-
ration and discussion. Apart from the SQMS metric, we also
used a high-performance SIQM model specific to screen
content IQA. Similar to the proposed SQMS-trained SIQE,
SSIQE and ASIQE models, SIQM was used to generate
training labels and thus to generate new models that we denote
as SIQE-II, SSIQE-II and ASIQE-II. We illustrate the perfor-
mance evaluation results in Table V. As may be seen, SIQE-II,
SSIQE-II and ASIQE-II achieved encouraging performance.
As compared to the SQMS-trained models, the performance
was a little lower, likely because SQMS performs somewhat
better than SIQM on the screen content IQA problem.

TABLE VI

ROBUST OF PARAMETERS IN THE PROPOSED SIQE METRIC

5) Parameters Robustness: The two parameters, namely
κ in Eq. (4) and γ in Eq. (16), were empirically assigned. Here
we discuss the sensitivity of each parameter by enumerating
19 values in a proper interval around the determined value
while settling the other one. The results are listed in Table VI.
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TABLE VII

MEAN COMPUTATION COST (IN SECONDS/IMAGE) OF THE SIQE, SSIQE, ASIQE AND 16 OTHER MODELS ON THE SIQAD DATABASE

Fig. 12. Scatter plots of DMOS versus FR FSIMc, VSI, ADD-GSIM, SQMS, and NR NIQE, IL-NIQE, SIQE (proposed), ASIQE (proposed), all on the
SIQAD database. GN: red; GB: magenta; MB: yellow; CC: orange; JC: blue; J2C: cyan; LC: green.

For convenience, we highlight the performance associated to
the parameters used in the SIQE metric. From the results,
we can derive two conclusions. First, the determined values
for these two parameters lead to the optimal performance.
Second, we can find that the performance is comparatively
robust across those enumerated values. For varying κ and
fixed γ = 8, the worst performance corresponds to 0.8362,
0.8213 and 0.6291 in PLC, SRC and KRC. And for changing
γ and fixed κ = 9, the worst performance corresponds to
0.8121, 0.7986 and 0.6038 in PLC, SRC and KRC. The
above-mentioned two worst performance results are both still
superior to state-of-the-art competitors. Furthermore, we also
notice that the PLC and SRC values grew close to 0.836 and
0.820 as γ was increased, suggesting that we can remove
L L H,n and L H L ,n , and only compute L H H,n in Eq. (16) for
saving a small amount of computation.

6) Runtime: A graceful IQA technique is expected to not
only deliver high correlation performance, but also to be com-
putationally efficient. The runtimes of 19 competing quality
measures were computed on the 980 distorted screen content
images in the SIQAD database. The testing platform was
based on MATLAB2015 running on a desktop computer with
16GB of internal memory and a 3.20GHz CPU processor.
Table VII provides the average runtime of each IQA model.
When assessing a corrupted screen content image of resolution
about 700 × 700 by the proposed ASIQE metric, less than
one second was required on average, which is an acceleration
of more than 155 times over SIQE and 7.2 times over SSIQE.

7) Scatter Plots: We also examined the scatter plots of
objective quality models against subjective opinion scores,
as shown in Fig. 12. The algorithms studied include
FR models: FSIMc, VSI, ADD-GSIM, SQMS, and the OU-
NR models: NIQE, IL-NIQE, SIQE (proposed), and ASIQE
(proposed). For each scatter plot, different colors distinguish

the sample points associated with different distortion types: red
for GN, magenta for GB, yellow for MB, orange for CC, blue
for JC, cyan for J2C, and green for LC. Generally, an effective
general technique is able to accurately and uniformly pre-
dict image quality across different categories of distortions.
As shown in Fig. 12, the scatter plots of the proposed SIQE
and ASIQE models are quite consistent across distortion levels
and types.

8) Comparison With a CNN-Based Metric: The convolu-
tional neural network (CNN) model has been broadly used
on many image processing and computer vision tasks, also
including blind IQA [62], [63]. Hence we compared our model
against the MultI-Channel CNN (MIC-CNN) model [63].
Since many samples are generally required to learn the CNN
framework, we retrained the MIC-CNN model using the large-
scale training data described earlier and derived a fixed CNN
model to be tested on the SIQAD and QACS databases. The
performance scores, in terms of PLC, SRC, KRC and RMS,
of the MIC-CNN model were respectively 0.6794, 0.6558,
0.4632 and 12.767 on the SIQAD database and 0.3551, 0.3330,
0.2327 and 3.8704 on the QACS database. These results are
inferior to those obtained using SIQE, SSIQE and ASIQE. The
reason for this is likely that screen content images present
different complexities than natural scene images, hence a
deeper, better designed CNN network may be needed.

9) Implementation: Towards a more straightforward illus-
tration of how to implement the proposed models, we used
three screen content images from the SIQAD database as
examples. These images were distorted from the same source
image, as exhibited in Fig. 13. From Fig. 13(a) to 13(c),
their DMOS values were respectively 43.88, 53.20 and 60.12,
which means that their quality rank was (a) > (b) > (c).
We implemented the proposed SIQE, SSIQE and ASIQE
models on these sample images and derived the quality scores,
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Fig. 13. Sample screen content images and their associated DMOS, SIQE,
SSIQE and ASIQE scores.

as provided in Fig. 13(d). One can see that all three models
generated faithful quality predictions consistent with subjec-
tive DMOS values.

V. CONCLUSION

We have investigated an important and timely emerging
research topic - quality evaluation of screen content images.
Images of screen content typically involve virtual desktop
applications and remote processing systems, which access
remote computational resources as well as acquiring and
managing remote data through the network. Unlike natural
scene images, screen content images arise by a process of
algorithmic generation and/or assembly. While natural scene
images are generally rich in color, shape complexity and detail,
screen content images often have limited color variation, and
contain simple shapes and fine lines. Such differences render
the design theories developed for assessing the quality of
natural scene images less reliable. This paper provides some
practical solutions to the screen content IQA problem.

To do so, we deploy four types of factors relevant to the
quality assessment of screen content pictures. We use these
to establish a general IQA framework based on big data
training samples, and propose high-performance NR models
to automatically evaluate the quality of screen content images.
We made three main contributions:

1) We proposed a unified framework for blind IQA model
design, which we used for screen content scene IQA
but could easily be used to design IQA models for
other types of images and distortion types. As depicted
in Fig. 2, ‘completely blind’ quality models can be
designed for, e.g., hybrid distortions or graphical images.

2) Based on the framework above, we developed an
OU-NR-IQA method called SIQE. The features com-
promising SIQE have four aspects - image complexity,
screen content statistics, global brightness and sur-
face quality, and image sharpness and corners. The
experimental results demonstrated the superiority of
the model relative to state-of-the-art competitors. The
training images were gathered by ourselves, with a wide
range of image content. We hope that these pristine
images help promote future screen content IQA studies.
Training labels were generated using the FR SQMS
model, which delivers excellent performance on existing
quality assessment databases related to screen content
pictures.

3) We introduced a method to accelerate the SIQE algo-
rithm. By sacrificing a little performance, the implemen-
tation speed was greatly improved by a factor of more
than 150.

In the future, we plan to focus on four research directions:
1) the reliable segmentation of pictorial and textual regions
from a distorted screen content image; 2) subjective and objec-
tive assessment of enhanced screen content images generated
by contrast improvement, brightness adjustment, interpolation,
and more; 3) the development of universal IQA models that
can faithfully evaluate the visual quality of natural scenes
and screen content images simultaneously; 4) collection of
more testing data, e.g. via online crowdsourcing subjective
image quality assessment [30], [64], for the purpose of better
designing and verifying the robustness of the objective screen
content IQA models.
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